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SUMMARY 

Calculations of unsteady turbulent flow around and behind triangular-shaped flameholders using a finite 
volume code with a k--E model of turbulence are presented. 

The flow behind the flameholders is found to be unsteady (a von Kirman vortex street appears) with 
a well defined Strouhal frequency (predicted Sr =0.27 compared with an experimental value of 0.25). The 
predicted profiles of velocity and fluctuating kinetic energy agree well with experiments. The periodic 
motions in the vortex street are shown to be far more important than the turbulent stochastic motions in 
exchanging momentum in the transversal direction. 

The pressure-velocity coupling is handled with the SIMPLEC pressure correction procedure. The 
discretization in time is fully implicit and 90 time steps are used to resolve one time cycle. It was found that to 
capture the vortex street it is very important that the grid spacing is sufficiently fine (180 x 100). 
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1. INTRODUCTION 

The design process of combustion chambers for gas turbine engines has until recently relied 
entirely on experimental testing and evaluation of these tests as well as engineering/engineers’ 
know-how. The reasons for this are that the highly turbulent flow field and the turbulence- 
controlled chemical reactions taking place have been impossible to resolve numerically owing to 
limitations in computer capability and numerical models. Since computers grow faster and more 
powerful every day, it will be possible to use more accurate numerical schemes, turbulence and 
chemical models in the future. In order to construct a work tool which can be used in the design 
process of a combustion chamber, the numerical models must be tested and validated against 
experiments. This is the object of the present research project which is being carried out in 
co-operation with Volvo Flygmotor AB (VFA). At the Department of Thermo and Fluid 
Dynamics we are working on numerical simulations and at VFA both numerical simulations’ 
and experimental investigations’ are carried out. 

In military aerospace engines there are two different types of combustion chambers: the main 
combustion chamber and the afterburner. In the first type of combustion chamber the fuel and 
oxidizer are fed into the combustor from two or more streams. The resulting flame is called 
a diffusion flame, since the reactants must diffuse to mix and eventually react with one another. In 
the second type of combustion chamber the fuel and oxidizer are already mixed and the resulting 
flame is called a premixed flame. To prohibit immediate extinction of a flame in the afterburner, 
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the velocity levels must be reduced in some areas. This is commonly achieved by placing a bluff 
body in the flow stream. The effect is a wake behind the body where velocities will be sufficiently 
small. In this wake the mixture can be ignited and the flame will spread throughout the 
combustion chamber. The flow induced by the bluff body or flameholder will be highly turbulent, 
unsteady and three-dimensional. 

The present work focuses on calculating the unsteady flow behind triangular flameholders. The 
configurations are two-dimensional and no combustion is included. Two different triangular 
flameholders have been investigated, one with an afterbody, called a stair, and one without an 
afterbody. VFA has carried out experimental investigations for these configurations. It was found 
that a von Karman vortex street with a well-defined Strouhal number appears behind the 
flameholders. The Reynolds number is sufficiently high for the flow to be turbulent and thus 
a turbulence model must be included. A k--E model has been used in the present work to  model the 
three-dimensional turbulent (random) fluctuations, while the large oscillating structures are 
resolved using the numerical method. The instantaneous velocity 6, can be written as - u,= ( U , )  + u: = u,+a, + u f ,  ( 1 )  

where ( U , )  is the phase-averaged velocity, resolved by the numerical scheme, and ut is the 
stochastic three-dimensional small-scale, i.e. turbulent, motion. ( U ,  ) is the sum of the time-mean 
value u, and the deviation 12, from U , .  

This concept of resolving the large-scale, organized unsteady motion with the numerical 
scheme and using a k--E turbulence model has previously been reported by Claus et ~ l . , ~  MacInnes 
et u L , ~  Franke et ~ l . , ~  and Kourta and Ha Minh.6 Claus et al. calculated a mixing layer with an 
imposed motion at a single frequency. Calculations were carried out using an LES method as 
described above and direct numerical simulation (DNS). No definite conclusion as to which 
method was the best could be drawn in that work. MacInnes et al. used the same concept, LES, as 
Claus el al. and their calculations were carried out at the same configuration as in Reference 3. 
They reported that the main features of mixing are well captured using this kind of LES modelling 
and they also established that very fine numerical grids are a necessity in such flows. Franke et al. 
calculated the flow past a rectangular cylinder where a von Karman vortex street existed 
according to experiments. They compared three different turbulence models: a k-E model with 
wall functions, a two-layer k-c model and a Reynolds Stress Model (RSM). They found that the 
first approach did not produce any vortex shedding at all and that the second predicted vortex 
shedding but with too low a Strouhal number. Only the RSM model produced results in fairly 
good agreement with experiments. Kourta and Ha Minh calculated the turbulent flow in 
a backward facing step configuration using a k--E turbulence model. Their approach was 
somewhat different from that used in the works above and in the present study. The mean flow in 
their configuration was not inherently unsteady, although the turbulent fluctuating velocities 
were of the same order of magnitude as the mean flow. They tried to resolve the large-scale 
turbulent motion with the numerical scheme. In order to achieve this, they tested different 
reduced values of the coefficient c, used in the k--E turbulence model. This coefficient relates 
turbulence parameters to an effective viscosity. In this way they reduced the turbulent length 
scales modelled by the turbulence model. They found that by reducing c, by 25% of its standard 
value, the predicted reattachment length was computed accurately. 

The equations are given in the following section. The finite volume code is briefly described in 
Section 3, while Section 4 summarizes the boundary conditions. The experimental set-up is 
presented in Section 5. The results are compared with experiments in Section 6, and conclusions 
are drawn in the final section. 
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2. EQUATIONS 

2.1. General transport equution 

The general transport equation in Cartesian co-ordinates for a variable @ reads 

where 3" denotes the source per unit volume for the variable @. Define a flux vector J m  containing 
convection and diffusion as follows: 

Integration over a typical control volume with volume V and surface A using the Gauss law 
yields 

2.2. Mean JEOW equations 

The continuity equation and the unsteady momentum equation read 

2.3. Turbulence model 

The standard k--E turbulence model is used. The unsteady transport equations for k and E can 
be written in tensor notation as 

Since the flow is considered incompressible, the density in equations (5)-(8) is constant. 
The generation term Pk has the following form in tensor notation: 

The turbulent viscosity pt is calculated as 
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and the effective viscosity peff is obtained as 

3. THE CODE 

3.1. Basics 

In this section the finite volume computer programme CALC-BFC (boundary-fitted co- 
ordinates) for three-dimensional complex geometries is presented. The code is described in detail 
in Reference 7, but its main features are given below for convenience. The programme uses 
Cartesian velocity components as have been used e.g. by Shyy et ~ l . *  and Braaten and Shyy.' In 
most finite volume programmes staggered grids for the velocities have been used." In the present 
work collocated variables are used, which means that velocities are stored at the same place as all 
scalar variables such as p ,  k, E. This concept, suggested by R h e  and Chow," has been used e.g. by 
Burns and Wilkes," Peric et a l l 3  and Miller and Schmidt.I4 

Equation (4) is discretized using standard control volume formulation as described in Refer- 
ence 10. The integration of equation (4) over a control volume (see Figure 1) gives 

( J - A), + ( J - A ) ~  + ( J + A), + ( J - A ) ~  = s@6 v. 
Note that the positive signs on the terms containing contributions from the west and south 

The discretized equation will be of the form 
surfaces will be negative because these scalar products in themselves are negative. 

%'(@.>P=c  a n b ( @ ) n b + S E ,  (10) 
where Q,=C a,,-&. 0 

Figure 1. Grid nomenclature. The grid is drawn using Cartesian co-ordinates for clarity. Bold lines construct a typical 
control volume 
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The coefficients anb contain contributions due to both convection and diffusion, while the source 
terms S: and S: contain the remaining terms. 

3.2. Time derivatives 

The scheme is fully implicit in time and of first order. It is therefore crucial that sufficiently 
small time steps are used to minimize the discretization error. 

3.3. Convection 

The convection, which is the first part of the flux vector J, is the scalar product of the velocity 
vector and the area vector multiplied by the density. For an east face this gives 

r i ~  = pu . A = pe( UeAe ,  + VeAe,), 

and since the Cartesian areas A,, and A,, are stored in the programme, the calculation of the 
convective contributions to J is straightforward. Special care must be taken, however, to avoid 
non-physical oscillations when the velocities are interpolated from their storage location at the 
cell centre to the control volume faces. Rhie and Chow" solved this problem. 

Calculation of the velocities at the control volume faces is described below. For simplicity, 
Cartesian co-ordinates are used. 

When the pressure gradient is added to the momentum equation, standard linear interpolation 
is used, i.e. 

where 

When calculating the velocity at the east face, for example, the pressure gradient is subtracted so 
that 

Pe = f x  ( P ) E  -k (1 - f  ( P )  P . 

where up is the discretized coefficient in the U-momentum equations (see equation (10)). The 
U-velocity at the east face of the control volume is now calculated as 

The advantage of this last expression is obvious: now the pressure gradient is calculated using 

The convective terms are discretized using a hybrid upwind/centrai differencing scheme." 
the adjacent nodes of face 'e'. This prevents non-physical oscillations in the pressure field. 

3.4. Difision 

Diffusion is the second part of the flux vector J in equation (3) and has the form 

9 = (J A),jiff = - TmA * V (a). 
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For the east face, for instance, it gives in Cartesian co-ordinates (x, y) 

and in curvilinear co-ordinates (4 ,  yl) 

The covariant (tangential) base vectors g ,  and g ,  correspond to the grid lines I and J respec- 
tively. The metric tensor is involved because the components of the product A - g ,  and the 
derivative a(@) /s t j  are both covariant and the product of their (contravariant) base vectors is 
not equal to zero or one (as in Cartesian co-ordinate systems), since they are non-orthogonal to 
one another. 

The normal vector in equation ( 1  1 )  is equal to the cross product of g, and g3 ( g 3  = e z  =(O, 0, l), 
since it is a two-dimensional configuration), i.e. 

n = g , x g 3 = g 1 ,  

which from g i g j = S {  gives 

Equation (1 1) can now 

-(A * V(@)),  = 

The diffusive terms 
accuracy. lo  

n.gZ=O.  

be written as 

are discretized using central differencing, which is of second-order 

3.5. Pressure correction equation 

The discretized continuity equation in one dimension takes the form 

me - hw =0, (12) 

where m denotes the mass flux, which is calculated as 

m=pA.u .  

In SIMPLEC" the mass flux is divided into one old value m* and one correction m' to the old 
one, so that 

y i z = f i * + ~ ,  

and the covariant velocity components are related to the pressure gradient as15 

where up comes from the discretized Ui-equation (see equation (10)). The mass flux correction at 
the east face can now be obtained as 

~ : = ( p A . u ' ) , = p , ( A , , u : + A , , v : ) = ( p A . g j V , c ) , .  
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Using equation (13) gives 

865 

(14) 

where p’ is the pressure correction. Equations (12) and (14) give 

( Z  A - .Y.>w -(? A .  Vpj) + ?il,* - m: =o. 
e 

This equation is a diffusion equation for the pressure correction p’, 

4. BOUNDARY CONDITIONS 

4.1. Inlet 

In the present calculations the inlet profile for the U-velocity was set to a constant value, where 
Uinlet was calculated from the mass flow used in the experiments. V-velocities at the inlet were set 
to zero. The turbulent quantities were set as 

0.16k1’,1’ 
&. =- 
In 0.21 ’ 

ki,=(005Ui,)2, 

where I = 3H denotes the channel height. 

4.2. Outlet 

The U-velocity was calculated from global continuity, while a Lero gradient boundary condi- 
tion was used for the remaining variables, This boundary condition will be correct if the outlet is 
placed sufficiently far downstream from the flameholder. In the present work the outlet is placed 
about 20 flameholder heights downstream of the flameholder. 

4.3.  Wulls 

Boundary conditions for the walls are set by using the standard wall functions.16 This 
approach relates the velocity components as well as ( k )  and ( E )  to the friction velocity u*, which 
is obtained from the log-law of the wall. 

4.4. Blockage 

Blockage of cells means that all dependent variables are set to zero inside the blocked domain, 
except for pressure for which a zero-gradient boundary condition is used. The blocked cells 
construct the flameholder. Boundary conditions at nodes adjacent to the blocked region are set 
using wall functions. About 0.5% of the cells are blocked in these calculations, which must be 
considered a small percentage in view of the complex geometry (see Figure 5). 

5. EXPERIMENTAL SET-UP 

The experiments on the Validation Rig were performed at Volvo Flygmotor AB (VFA) in 
Trollhattan, Sweden, during 1990. Measurements were performed using a two-component laser 
Doppler velocimetry LDV system.’ The configuration on which the measurements were per- 
formed is shown in Figure 2. 
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Figure 2. Configuration with flameholder 

The Validation Rig is built in modules in order to simplify any modification of the configur- 
ation or alteration of the optical access. In order to obtain a uniform flow upstream of the 
flameholder, some honeycombs and a Mach plate were placed in the upstream flow. This did not 
produce a perfect two-dimensional uniform flow, but the discrepancies are considered small. Two 
vortices counter-rotating around the axis parallel to the mean flow direction may be present in 
the upstream velocity field (A. Sjunnesson, VFA, personal communication, 1991). 

Experiments were conducted on two different flameholders: a triangular prism (see Figure 3) 
and a triangular prism with an afterbody, similar to a stair filling out the wake (see Figure 4). The 
blockage these flameholders produces is one-third. The total mass flow was m1 =0.6 kg sKi. No 
combustion comparisons are given in this report, since up to now we have been concentrating on 
the cold flow. 

6. RESULTS 

6.1. Flameholder 

The results from the calculations of the two-dimensional unsteady turbulent flow around and 
behind a triangular flameholder, with a Reynolds number U i , H / v  of about 45 000, are presented 
here. Unsteady behaviour is due to vortex shedding, with vortices alternately shedding from the 
upper and lower edges of the flameholder, forming a von Karman vortex street behind the 
flameholder. It may be mentioned that no triggering was used to get unsteady results, but the 
unsteadiness in the calculated results evolved naturally. 

In Figure 5 the grid near the flameholder is shown. The blocked cells which comprise the 
flameholder are marked with dots. The total grid consists of 180x 100 grid points. Some 
calculations have also been carried out using a 180 x 200 grid. Velocity profiles obtained with this 
refined grid were identical to these presented below, which indicates that the results obtained with 
the 180 x 100 grid are grid-independent. 

To illustrate the periodicity of the flow, the (V)-velocity taken behind the flameholder is 
presented as a function of time in Figure 6. It can be seen that an almost perfect periodicity exists, 
with a well-defined frequency. A cycle time of about 9 ms, using 90 time steps of AT = 0.1 ms in the 
calculations, gives a Strouhal number 

of 027, which should be compared with the experimental value of 0.25. To further illustrate the 
periodicity of the flow, pressure contours for four different times in a typical cycle are shown in 
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Figure 3. Flameholder: a = 8 mm, b = 34.6 mm 

Figure 4. Flameholder with stair: a= 8 mm, b= 34.6 mm, c =  17 mm 

< =  0.10 rn => 

Figure 5. Grid near flameholder 
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Figure 6. Normalized (V)-velocity 

U 

Figure 7. Predicted pressure contours at different times: (a) T = 2.2 ms, (b) r = 4-4 ms, (c) T = 6 6  ms, (d) T = 8.8 ms. The 
arrow above each figure indicates the position of a chosen vortex as it is convected downstream. The cycle time is 

approximately 9 ms 
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Figure 7. From Figure 7(a) to Figure 7(d) almost one cycle has been completed. It is interesting to 
follow one vortex and see how it is convected downstream as time increases. A vortex also loses 
strength while being convected downstream, because the turbulent fluctuation field, through the 
production term (see equation (9)), is continuously extracting energy from the mean flow field. 
The increased distances between isobars downstream show us that the vortex is constantly losing 
vorticity, and sufficiently far downstream it will cease to exist. It is, for example, possible to study 
a vortex that has just been formed close to the upper corner of the flameholder and follow it in 
time through Figure 7(a)-7(d). In Figure 7(d) a new vortex is being formed at the same location 
where the previous one was formed. Figure 8 shows a velocity vector plot for the near-flame- 
holder region. A vortex has just been formed at the upper edge of the flameholder and has begun 
to be convected downstream (cf. Figure 7(a)). At the lower edge a new vortex is beginning to form. 
Figure 8 shows clearly the non-symmetrical behaviour of the instantaneous flow field, while the 
time-averaged mean fields will always be symmetric or antisymmetric. 

Experimental data for U ,  v, U,,, and V,,, at five different locations behind the flameholder as 
well as at the centreline are available. In Figure 9 the U-velocity at the centreline is presented. 
Predictions compare well with experiments. The length of the mean recirculation region is 
computed accurately but the location of maximum negative U-velocity is predicted slightly 
upstream as compared with experiments. In some previous attempts with this configuration, 
steady calculations were carried out using symmetry boundary conditions at the centreline. This 
resulted in a predicted recirculation region three times longer than in experiments. The unsteady 
mean flow increases the exchange of momentum between the wake and its surroundings (see 
further discussion below), which explains why the recirculation zone is reduced in unsteady 
calculations and hence the necessity of unsteady calculations. 

The calculated 0-velocity 15 mm behind the flameholder (Figure (lOa)), is in reasonably good 
agreement with experiments, except close to the symmetry line where the U-velocity is under- 
predicted. The flow close to the flameholder is very complex and changes rapidly (see Figure 8). 
For the locations of 38, 61 and 150 mm behind the flameholder (Figures 10(b)-(d)), the calcu- 
lations compare very well with experimental results. At the last location, 376 mm behind the 
flameholder (Figure lO(e)), experiments show nothing that resembles wake flow, whereas the 
calculations do show some memory of it. 

Figure 8. Instantaneous velocity field. In the centre is a vortex that has rolled up at the upper edge and a new vortex is 
beginning to  roll up at the lower edge 
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Figure 9. 0-velocity at centreline: -, calculations: I ,  experiments 

To be able to compare the calculated fluctuating kinetic energy with the fluctuating kinetic 
energy in the experiments, where the RMS values of U and V are measured, we compare 

(16) 

(17) 

2 
Kexp,tot=+(UrZms,exp+ Vrms,exp) 

with 
- 

2 2 
Kcalc, tot = 3(Urrns, calc + Vrrns, talc) + k 

where 

i.e. when calculating Kca,c,totr the turbulent kinetic energy is superimposed to  half of the sum of 
the variances for the two velocities U and V, In doing this, we assume that i6 is small in 
comparison with u" and 6, which is reasonable. 

For the location 15mm behind the flameholder the agreement between experiments and 
present calculations is very good (see Figure 1 l(a)). At this location pure turbulent kinetic energy 
contributes approximately 50% of the total fluctuating kinetic energy. Further downstream the 
turbulent contribution to the total fluctuating kinetic energy decreases and at 38 and 68 mm the 
maximum fluctuations are larger in the experiments than in the calculations. This indicates that 
the vortex shedding is slightly stronger in the experimental flow, which would give a larger 
transversal exchange of momentum and a faster decay of the velocity defect. This was observed 
from the velocity profiles (Figure lo), where it can be seen that the wake in the experiments 
disappears slightly faster than in the calculations. At 150 mm behind the flameholder the 
calculations again compare well with experiments. The last location situated 376 mm behind the 
flameholder (Figure 1 l(e)), shows very low values of fluctuating kinetic energy in both experi- 
ments and calculations. 
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It is interesting to study whether the transport of mean momentum is most affected by 
turbulent motion, i.e. the Reynolds stresses (u:ui), or by the correlations of velocity fluctuations 
EiEj  due to  the quasi-stationary flow field. Their appearance in the momentum equations is shown 

~ 
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below. The instantaneous Navier-Stokes equation reads 

Using Reynolds decomposition (see equation (1)) rearranging equation (1 8) using the continuity 
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equation and doing a phase-averaging yields 

This is in principle the general transport equation (see equation (2)) for a velocity component 
( U i  >. If a second time averaging is performed, this time over an infinitely long time, the following 
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Figure 12. (Continued) 

equation is obtained: 

( O j u i ) . j =  

When a comparison of the last two terms is performed, one can clearly see that the last one 
dominates in the whole wake region (see Figure 12), which means that the transversal exchange of 
momentum is mainly due to periodic motions rather than to turbulent motion. 

It can be seen that the profile for the periodic motions has three minima and maxima in 
Figure 12(a). These seem to be connected with the six inflection points in the velocity profile in 
Figure lqa) ,  which is logical: the exchange of momentum is on average transported down the 
velocity gradient. Further downstream the local maxima in the velocity profile in the shear layers 
have disappeared and the velocity profiles contain only two (interior) inflection points, which 
correspondingly reduces the number of maxima/minima in the profile of transversal exchange of 
momentum to two. 

6.2. Flameholder with stair 

Here the geometrical configuration is somewhat different. An afterbody with the shape of 
a stair is placed right behind the triangle (see Figure 4). In Figure 13 the (V)-velocity at a point 
below the flameholder is presented as a function of time. As in the previous case, a well-defined 
vortex-shedding frequency exists, The Strouhal number Su (see equation (15)) is 0.26 here, which 
should be compared with a value of 0.19 from experiments. The Strouhal number calculated here 
is approximately the same as in the previous case. In the present calculations the afterbody does 
not affect the shedding frequency at all, whereas according to experiments it should. 

In Figure 14 the U-velocity at the centreline is presented. In the wake region there is a big 
difference between present calculations and experiments, because the intensity of the vortices in 
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Figure 13. Flameholder with stair. Normalized ( V)-velocity 

the vortex-shedding motion is underpredicted. This is probably due to the k - E turbulence model 
smoothing out the velocity gradients, which results in too small and too weak vortices in the 
vortex-shedding motion. In Reference 1 7  calculations on a quadratic cylinder were carried out 
and it was concluded that the k--E turbulence model cannot predict the vortex shedding accurately 
for such geometries. In the afterbody region, especially where the vortices roll up, the geometry of 
this case is similar to a quadratic cylindei. 

The results are presented in greater detail in Reference 18. 
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7. CONCLUSIONS 

Flow past bluff bodies is often unsteady and at high Reynolds numbers (Re = 45 000 in the present 
study) it is also turbulent. The instantaneous flow situation is highly complex, with a number of 
vortices present in the flow. This kind of flow is known as vortex-shedding flow. 

In this work the calculations were carried out using a finite volume formulation with collocated 
variables for the discretization. Velocity-pressure coupling is handled by the SIMPLEC proced- 
ure. For closure of the equation system, a standard k-& turbulence model is used. 

The following conclusions can be drawn. 

1. Fine numerical grids in space and small time steps are necessary in order to achieve good 
agreement with experiments. 

2. Calculated velocity and fluctuating kinetic energy profiles downstream of the flameholder 
are in good agreement with experiments. 

3. The non-dimensionalized frequency of the vortex-shedding motion. i.e. the Strouhal number 
Sr, is in good agreement with experiments for the triangular cylinder. The computed Sr is 
8% greater than the experimental value. 

4. It is concluded that the transport of mean momentum is more affected by the vortex 
shedding, than by turbulence. 

5. A standard k--E turbulence model can be used to calculate the turbulent influence on 
unsteady flow fields when the flow is inherently unsteady. 

6. When a stair-formed afterbody was added to the triangular cylinder (which resulted in 
a square-like body), the vortex shedding was strongly underpredicted; this is in line with the 
results of Franke and Rodi," who found that the k F model is not able to predict vortex 
shedding after square cylinders. 
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APPENDIX: NOMENCLATURE 

a 
A 
Cpr Gel, G 2  

f 
g .. 9.. g l J  
gi 
H 
k 
n 

P 

IJ' 

n 

P' 

Sa, 
S Y  

pk 

coefficient in discretized equation 
area 
coefficients in turbulence model 
frequency 
determinant of g i j  
covariant and contravariant components of metric tensor 
unit base vector tangential to  grid lines 
height of flameholder 
turbulent kinetic energy, i ( u i u l )  
number of time steps in one cycle 
normal vector 
pressure 
pressure correction 
production term in turbulence model 
source term 
Strouhal number 
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v, 
x, Y 

Greek letters 

6V 

P 

r 

& 

5,  4 
ti 

p) 
P 

@ 

Subscripts 
calc 
e, w, n, s 
E, W, N, S, P 
eff 
exP 
rms 
t 
@ 

cycle time 
turbulent shear stress 
turbulent velocity fluctuation 

Cartesian velocity components 
velocity correction 
instantaneous velocity in xi-direction 
covariant velocity component 
Cartesian co-ordinates 

( U i ) - V i  

exchange coefficient 
volume of control volume 
turbulent dissipation rate 
dynamic viscosity 
co-ordinates along grid lines 
co-ordinates along grid lines, tensor notation 
density 
phase-averaged dependent variable, (1,”) Xt= @(T + m T )  
time average of (a) 

calculated 
referring to control volume faces 
referring to grid nodes 
effective 
from experiments 
root mean square 
turbulent 
general dependent variable 
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